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Analysis of Wave Propagation in Inhomogeneous Optical

Fibers Using a Variational Method

TAKANORI OKOSHI, MEMBER, IEEE, AND KATSUNARI OKAMOTO

Absfract—The variational method is used to determine -e propa-

gation characteristics of an optical fiber consisting of a core with an
arbi~ary refractive-index distribution and a uniform cladding.

The problem is first translated into a variational problem; the

factional is computed upon the TEM-approximation basis. The
variational problem is then solved by using the Rayleigh-Ritz method.

The computed propagation klmracteristics are presented for refrac-

tive-index distributions of practical interest. The single-mode
condition for a quadratic self-focusing fiber is obtained’ as v < 3.S3

where v denotes the conventionally used normalized frequency; this
result agrees with the’ numerical analysis by Dil and Blok. The ob-
tained characteristic equations for the simplest case (uniform core
casej are compaged with analytic solutions to ensure the validity
of the analysis.

I. INTRODUCTION

T

HE glass fiber is the most promising optical waveguide

fo~ use in the future optical communication and opti-

cal. information-processing systems. It consists of a core

having uniform or graded refractive index and a cladding

with a smaller refractive index. When’ a glass fiber is pro-

duced by the double-crucible process [1], the boundary

between the core and clladding becomes more or less

gradual due to the diffusion of the constituting materials.

Therefore, it is of practical interest to develop the method

of analyzing the propagation characteristics of (‘continu-

ously inhomogeneous” dielectric waveguides.

Kurtz and Streifer [2:] analyzed the propagation of

electromagnetic waves in a radially inhomogeneous wave-

guide. Snyder [3] used the perturbation theory to obtain

the expression fw the propagation constants of optical

waveguides with diffused boundaries; his method is very

simple and useful in many practical cases. Clarricoats and

Chan [4] used a staircase function to approximate the

continuous variation of the refractive index, and solved

the problem in each stratified cylindrical medium. Kirch-
hoff [5], and Dil and Blok [6] used the power-series ex-

pansion to express the transverse field components in the

inhomogeneous core. Heyke and Kuhn [7] computed the

dispersion characteristics upon the basis of the variational

expression of the propagation constant. However, they

assumed a field distribution corresponding to a (‘reference

permittivity profile,” which is not always equal to the

actual profile.

In this paper we present a more exact variational-

method analysis of the radially inhomogeneous fiber.
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The scalar wave equation for the transverse field com-

ponents and the boundary conditions are translated into

a corresponding variational problem” having the original

equation as its Euler equation. Solving this variational

problem by the Riayleigh-ltitz method, we obtain the

characteristic equation giving the propagation constant.

Numerical results are also presented for various refractive-

index profiles of practical interest.

In Section II, basic equations are derived and formu-

lated into a variational form. In Section III, the vari-

ational problem is solved by using the Rayleigh–Ritz

method to give the characteristic equation; its solutions

are shown in Section IV for several refractive-index pro-

files. The results of the analysis are compared’ with pre-

viously reported ones in Section V.

II. BASIC EQUATIONS

A. Field Equation and Boundary Condition

Consider a radially inhomogeneous dielectric cylinder

of radius a surrounded by a homogeneous dielectric me-

dium (Fig. 1). We assume that the perrnittivity varies

in the radial direction r as

where q is the permittivity upon the axis and f(r) is a

function satisfying

f(o) = o and I j[r) I<< 1. (2)

As has been shown by Kurtz and Streifer [2], the

transverse electric and magnetic fields consist of two

independent components:

E, = CIE,(lJ + CIE,@J (3a)

H, = ClH,(l) – cJft@) (3b)

where Cl and C2 are arbitrary constants, Et(i) and Ht(~)

(i = 1,2) are given in terms of the “transverse field func-

tions” Wi) as

~ (,, = (61/60)-3/4
t

k,
- (+j?f, – IJ,)w’) (?”) (4a)

and

H (,, = (dco) 1/2
t u. x Et(i), (i = 1,2). (4b)

no

In these equations j = (– 1)112,lco= co(eO~o)~/z,To = (Mo/eo)1/2,

cois the angular frequency, and u,, Ue, and u. are the radial,
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Fig. 1. Geometry of the waveguide. Symbols ~oandez denote the
permeability of the media and the permittivity of the cladding.

azimuthal, and axial unit vectors, respectively. In (4) and

also in the following equations, the upper and lower signs

correspond to i = 1 and i = 2, respectively. The trans-

verse field function satisfies the second-order differential

equation [2]

:(’%)+[-0-62-‘Y’)21’W(”‘O;
(i = 1,2) (5)

where B is the propagation constant and n is the azimuthal

mode number (Wi) a exp ( —@3) ).1
The axial electric and magnetic fields are given in terms

of q(i):

E. = (cl/eO)-’/’( –CIG(lJ + C2G(2)) (6a)

and

Hz = j( (cI/co) ‘/4/qo) (C’IG(l) + C“2@2J) (6b)

where

(7)

The continuity conditions for @i) and G(’) at the core–

cladding interface (r = a), are expressed approximately’

as

[=l.==[Wihd%lr=a‘8)
where ~clad(i) (~ = 1,2) are the transverse field functions

I The two components, i = 1 and i = 2, correspond to two cir-
cularly polarized waves in opposite directions as seen in (4a). Hence,
essentially, they are on an equal f ootmg. The differences in the
equations for the two components stems from the fact that in
deriving (5), the azimuthal dependence is not assumed as stationary
(sinusoidal) but as exp ( –jno).

zSuppose we define a parameter 6 = 1 — cJ)~(a) expressing the
relative discontinuity of the refractive index at the core–caldding
interface. Then (8) is valid exactly only when 6 = O, that is, when
no step is present at the interface. When J # O as in case A shown
in Fig. 2, the exact boundary conditions [10] are much more com-
plicated than (8); some error will be included in the results obtained
upon the basis of (8). How~ver, in mos~ pra~tical cases we may
appromrnate O + O (weak gmdance apprommatlon) and use (8).
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in the cladding, and are the solutions of

H’d&)+[w2-’2-‘n:1)21rwo’ad‘o
(i= 1,2). (9)

If we write

\

n+l, ~=1

m= for

in -1,

we may use common notations:

v(’) (r) , and R.1.d (?”) for V.l.d(l) (?”)

tain

~=z (lb)

R(r) for W’) (r) and

d 1}[dR (r)

‘rdr 1
+ coze(r)~o – p’ – $ rR(r) = O

i ‘R’ad(r)} [
r’

dr 1
+ @262#0– p’ – $ r.lad(’) = ()

where the boundary condition is given as

[&dT],..=[R&dRO~~(r)l,.;

Equations (11) - (13) are the starting equations

following analysis.

to ob-

(11)

(12)

(13)

of the

B. Formulation oj the Problem in a Variational Form

We first compute the fields in the core. Sin?e the right-

hand side of (13) is unknown, we tentatively express it

by 4P, which will be determined later in Section III-C.

The solution of (11) maybe obtained also as the solu-

tion of the variational problem [8] to minimize the func-

tional:

a dR(r) 2

1{ }
I~R] = R’(a)a@d – —

dr
r dr

1+/“[w2e(r)m–P’ – $ R’(r)r dr. (14)
o

The justification of the above statement is given as follows.

We assume that 1 (R) is minimized for R (r) = R,(r), and

consider a slightly deviated case in which R(i) = RO (r) -1-

aq (r) Q Rb (r), where q(r) is an arbitrary continuous
function of r and 6 denotes a real small quantity. ,Putting

R~ (r) into (14) and considering that IER8] must be mini-

mized for 8 = O, we obtain

: IIR,]
8=0

1+ 2 f [a’e(r)po – 132– ~’ rRo(r)q(r) dr = O.
0

(15)

By partially integrating the second term, we may write
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‘(a)aRO(a){“-[%’IJ +Ilw%’)
[

+ co2e(r)/Jo -@–
1}

$ rRO v(r)dr = O. (16)

Since n(r) is an arbitrary function of r, this equation

shows that RO(r) satisfies both the wave equation (11)

and the boundary conditioq (13).

The final functional to be dealt with is obtained by

putting (1) into (14):

IIR (r)] = adyd?’(u) + [CIJ2WJ0– @’l
/

“ R’(r)r dr
o

J- &WO “f(r)R2 (r) r dr. (17)
o

III. SOLUTION OF THE VARIATIONAL PROBLEM

BY RAYLEIGH-RITZ METHOD

A. l?xpansion by Ortho-Normalized Functions

To solve the above equation by usitig the Rayleigh-Ritz

method [8], we express R (r) in terms of a set of orthogonal

functions. We consider two cases: m # O and m = O,

separately.

1) Ca.sern #O(n>Ofori=l, orti>

this case we use the orthogonal functions

~m ,(,) = & Jm(A,r)

a J~ (Aka)

as the bases of the trial function of the

2jori=2):In

(18)

Rayleigh-Ritz

method. In (18) h~ = &-l,k/a, where j~~l,k denotes the

nonzero kth root of J~_l (z) = O. These functions satisfy

the ortho-normalizing condition [9]:

/

a

g~,~(r)g~,z(r)r dr = &Z (19)
o

where 6bz is Kronecker’s delta.

.2) Case m = O (n = 1, i = 2): In this case we denote

the kth root of J1 (z) = O (including z = O) by jl,~, and

write ~h = j~ ,&–1/a. We use a series of functions

~,(r)= ~ Jo(w)
(20)

a JO(pka)

as the bases of the trial function. From the Lommel’s

integral formulas, the ortho-normalizing condition

/

a

hk(r)hi(r)r dr = &Z (21)
o

is also proved [9].

B. The Functional

In the following analysis, to treat the cases m # O and

Ihk (r), for m#O

ti~,ti(r) =

hk(r), for m=O (22)

will be used. The ortho-normalizing conditions are then

J
a

Fm,k(r)Fm,t(r)r dr = &Z (23)
o,

and the solution R(r) of the variational problem (17)

is expressed as

R(r) = E a~F~,k(r) (24)
k=l

where hk should be determined so that the functional

ii (17) I[u@, oos,aN] is minimized.
To determine ak, we must express each term of (17)

in terms of ak. First, from (24), we obtain

w(k) = 55 akaJ7m,k(r)Fm,2(r) . (25)
k=l 1=1

Hence, from the ortho-formalizing conditions (23),

Jo k=l 1=1

in the second term of (17). As for the first term, since

F~;k (a) = @/a holds, we obtain

(27)

The third term of (17) is rewritten, after some computa-

tions using the Bessel-function formulas (see the Appendix

for the detail), as

where

Xkz =

\ pkzdkl, for m = O. (29)

Finally, the last term of (17) is given as

/

a

f(r) R2(r)r dr = ~ ~ akalckl (30)
o k=l L=l

where ckt are parameters given in terms of j (r) as

C,kl =

{

form#O

(31)

I 2

/
af(r)JO(pkr)JO(#zr)r d~,

a2Jo(wtu)Jo(wa) o

m = 0 in a unified manner, a new notation for m = O.



OKOSHI AND 0KAM02’0: WAVE PROPAGATION IN OPTICAL FIBERS 941

Putting (26)–(28) and (30) into (17), we may express sionsfor @6:

the functional in terms of ah as

I[alj%””” )aN]

C. Derivation of the Characteristic Equation

To minimize the functional I with respect to all the

parameters a?$,the following conditions must be satisfied

for all k:

N

— 2$ alXkl – 2U2W0 ~ aiCkt = O. (33)
1=1 1=1

[

—m — wKm.l(w)/K&(w) , for t = 1,

(case I) (39a)

a$fl =

‘m — wKnl+l(w)/Km(w) , for i = 2,

(case II). (39b)

These conditions are reduced to a set of homogeneous where

2) Case m = 0: In this case the transverse field in the

ckidding is expressed as Rolad (r) == BOKO ( wr/a) j where

BO is an arbitrary constant. Hence the parameter C@@

becomes

wK1(w)
a$o=— ——————

Kc)(w) ‘
(case 111). (39C)

D. Unified Formulation of the Characteristic Equation

To treat the three cases I (39a), II (39b), and III (39c)

in a unified manner, we put (39) into (35), and use the

notation

linear equations

N

~ alShi = O, (k = 1,2,. “ .,N) (34)
Z=l

where ~kl are given as

[

2 (a@@ +’ m) + (U2 — jff&.l,k2) C$k2 – @2WOa2cN?
*=

(m # O)

Skl = (35)

2@jj + (U2 — jl,k_12) ~kl — @2WOa2ckt;

(m = O)

u = (U2W.J0— f12)1/2a. (36)

The relations Aka = ~~-l,k and Pka = ~l,&l have been used

in obtaining the previous equations. In order that a non-

trivial solution of (34) exists,

det (ski) = O (37)

12wKn (W)... case ~
—

K.+,(w)
(n> O,i=l)

1
(41a)

4(n – 1) –
2wKn (W)

K.-,(w)
. ..case II (n>2, i=2)

I (41b)

I 2wK1 ( W)
—

Ko(w)
. . case 111 (n=l, i=2)

[

(U2 – jn,k2) “ “ “case I

trk = (u2 – &.z,k2) - +‘case II

(W2 – jM_,2) ● ● -case 111

(41C)

(42a)

(42b)

(42c)

.Jn+,( jn,,x)v ax.”” (D (daa)

must hold. This equation is the characteristic equation and
which determines the propagation constant of the optical

fiber,

In the previous discussions, the parameter bfl giving

the continuity condition at the core–cladding boundary

has been left undetermined. In the following we calculate

the parameter 4P to make the characteristic equation

complete. We assume that the uniform cladding extends 2u261poa2

J

1

to the infinite distance. yk~ = s --
J~_l ( jn--z,lj)~~-l ( .j~-2,2) ~

j(ax)Jn._l( j~-z,kx)

1) Case m # O: In this case the solution of (12) is given

as R.lad (r) = B.,K~ (wr/a), where B~ and Km denote ar- .J._l( jm–.z,ZZ)Z dX “ “ “ (H) (43b)

bitrary constants and the mth order modified Bessel func-

tions of the second kind, respectively, and 12w2elpoa2

/
f(aX)~O(jl,k-1$)

~o( jl,k-1)~0( .il,l-d Ow = (62 — W%po) %. (38)

Calculating the right-hand side of (13) using formulas \ Jo ( jl,plx)z fit . . . (111) . (43c)

of the modified Bessel functions, we obtain two expres- From (37) and (40), we obtain
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. . .

. . .

@– YNI @– YN2 s.. @+ UN– YNN

Equation (44) may be rewritten to

where D is given as

D=

71 – YH –YE . . . – YIN

– Y’n U2– Y22 . . . – Y2N

. . .

l“” .

I
. . .–Ym –YN2 . . . UN– YNN

(4:)

(45)

(46)

which is the characteristic equation of the HEnz mode

(n > 2) given by Snyder [12]. For the case III, from

~,,, (41c), (42c), and (50), the characteristic equation is
7—and .Zbz is the cofactor of the element dkl ( = Uk&t z . . . .

We first consider the above case I. From one of the

Bessel function formtias [9], we obtain

m 1 J.+, (U)
——— (51)

:1 k = 21 (u’ – jn,jj = – 2ZS!J.(U) “

Hence, from (41a), (50), and (51), the characteristic

equation is given as

K.+l(w) Jn+, (u)
(52)

WK.(W) = — tin(u) “

Referring to the classification of modes given by Snyder

[12], it is seen that (52) is identical to the characteristic

equation of the TEOZ mode if n = O, and that of the EH.Z

mode if n > 1.

Next, for the above case II, using (41b), (42b), and

(50), we obtain

K.-,(w) _ J.-,(u)
(53)

zoKn (W) – d. (u)

of matrix D. From (45), the characteristic equation (the

relation between u and w) of the optical fiber having an

arbitrary permittivity profile may be written in a unified

form

(47)

IV. ANALYSIS OF THE PROPAGATION

CHARACTERISTICS

A. Homogeneous-Core Fibers

We first consider this simplest case with results that

can be compared with analytic solutions reported pre-

viously [10]–[12]. In this case ~(r) = O in (1); conse-

quently, from (43) Ykt = O for all k and 1. Hence we ob-

tain from (46)

N

D=~Uk (48)
k=l

and Zkl are given as

[

ii Uk, for ii=l

Zkz = k=l;k#l (49)

\ o, for k # 1.

Putting (48) and (49) into (47) and setting N ~ co, we

obtain the characteristic equation for the homogeneous-

core fiber as

(50)

given as

Ko(w) Jo(u)— .
wK1 (W) d, (u)

(54)

which is identical to the HE1l-mode equation [12].

Thus the validity of the present analysis has partly been

proved by the comparison with analytic solutions for the

special case. We should here note that when we solve this

sort of problem by using the Rayleigh–Ritz method, we

obtain a set of characteristic equations directly but cannot

tell to what kinds of mode they correspond. In the present

case, the nature of the modes could be known by comparing

the equations with the analytic solutions. In more general

cases as described in the following, the nature of a mode

can be known only after the corresponding field dMxibu-

tion has been computed.

B. Inhomogeneous-Core Fibers

To treat the problem more generally, we go back to

(1), or an equivalent expression in terms of the refractive

index:

nz (r) = nlz[l — j(r)], 05r5a (55)

where nl denotes the refractive index upon the axis. We

introduce here a parameter A which represents the rela-

tive difference of the refractive indexes in the core and

cladding:

(56)

where nZ denotes the refractive index of the cladding. Note

that when A <<1, we may approximate A + (nl – n.z)/nl.

In principle, the method of analysis described above

may be applied to any refractive-index distribution. How-
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ever, actually an entirely arbitrary, or extremely peculiar

distributions arenot used. Inthefollowing discussions, to

be practical, we deal with “a set of various refractive-index

profiles including the homogeneous-core and the quadratic

refractive-index distribution as two special cases.”

The quadratic distribution may be expressed by

f(r) = 2Ar2/a2. (57)

Hence, we may use the following formula to express re-

fractive-index distributions “between” the homogeneous

and the quadratic cases:

sinhz (Pr/a)
$(r) = 2A sinh, (P) . (58)

When P ~ O this index profile approaches the quadratic

distribution, whereas when P -i co to the homogeneous-

core case.
To express refractive-index distributions “sharper than”

the quadratic distribution, we use

tanh’ (Qr/a)
f(r) = 2A tanh, (Q) (59)

which, when Q j O approaches the quadratic distribu-

tion, and when Q -+ w represents the “delta-function-

Iike” refractive-index distribution. Those various refrac-

tive-index profiles are illustrated in Fig. 2.

Next, following reference [11], we introduce a param-

eter v which is defined as

v = (U2 + w2)l/2. (60)

From (36), (38), (56), and (60), we obtain

V2

u2e1poa2 = —
2A

(61)

which shows that v is proportional to the frequency. Ac-

cordingly, v is often called the normalized frequency.

Using the parameter v we may rewrite (43a) –(43c) as

I (62b)

(1 1
JO( jl,k-l~)~o( ~l,i-l$) ~ d~. . . case III

2V2 p(x)

o JO( jl,k-1).lo( j1,2-1)

(62c)

where x = r/a and p(x) = (1/2 A)j(az).
The previous equations tell that Y~J are proportional

to the square of the normalized frequency v. Hence (47)

gives implicitly the relation between u and v because

@ = func (w) and W2 = V’ – u2. Since the parameters a

and A characterizing the properties of the fiber do not

943

N.mhzed Rodius [V.]

Fig. 2. Various refractive-index distributions used in the numeric-
al analysis. B, C, and D: n/nl = 1 – A[sirrh2 (f’r/a) /sinh2 (P)].
E: n/nl = 1 – A(r/a)2. E’: n/nI = 1- A[tanh2 (@/a) /tanh2 (6?)].

appear in the equation, the propagation characteristics

of the fiber may be analyzed generally upon the basis of

(47).

C. Fields in the Fiber

When the relative refractive-index difference A and

the core radius a are given, we may determine the propa-

gation constant PI from the characteristic equation (47),

and further determine the values of u, v, and i%l (k,l = 1,2,

. . . ,N). From those Skll the coefficients a~ in (24) are

given as the solution of the following simultaneous equa-

~ions of the order (N – 1):

Sl,l “ “ “ Sl,l-1 SIJ+I “ “ “ &,N

. . . .

. . . .

. . . .

S1-1,1 . . . s&.I,&-I SC–1,1+-I . ● “ S1–l,N

( ALZ
.
.
.

AZ_I,Z

St+l,l

II
““.8Z+I,Z-6’z+I,z+ .- “ 81+l,N Az+I,

. . . . .

. . . . .

. . . . .

SN,I s . . 8N,1-I SN, 1+1 . ● . SN,N AN,l

—— —

Sl,l
.
. 1.

S1.-l,l

Sl+l,l
.
.
.

\ 8N,l

(63)

where Akz = ak/al (I% = l,ZO” “,1 — l,J -1- l,”” “AV. BY

putting these ak thus obtained into (24), the transverse
fields w(’) (i = 1,2) of the lth mode is determined except

for a constant factor. If we use Au instead of ak, we may

express the transverse field in the core as

N J.+l( jn.ICr/a). . .case I (64a)
W (r) = Ror ~ Ahz

k=l Jn+l( jn,k)
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Fig. 3. Propagation characteristics for various refractive-index
distributions. (a) HE1l mode. (b) TEoI mode. (c) HE8? mode.
(d) EHa mode. [The dotted curve in (d) is the characteristic curve
obtained by the analytical solution (n = 4, 1 = 2 in (52)).]

where AU = 1 and RZO = fiaJa, and the field in the

claddingas

Kn+, (wr/a) . . . case ~
Tclad(l)(~) = ~(l)(a)

K.+, (W)
(6.5a)

( Kn_,(wr/a)...ca~e ~1
T(2) (~)

K.-,(w)
(65b)

‘volad@)(r) =

1 KO(wr/a)
ig(2) (~)

K,(w)
..-case III. (65c)

V. RESULTS OF COMPUTER ANALYSIS

AND DISCUSSIONS

The computed propagation characteristics and the

transverse field distributions for the various refractive-

index profiles illustrated in Fig. 2 are shown in Figs. 3

and 4. Fig. 3(a) – (d) shows the normalized eigenvalue u

as a function of the formalized frequency v for various

refractive-index profiles. Fig. 4(a) –(d) shows the field

distributions for various refractive-index profiles, the

constant R zo in (64) being determined so that the trans-

mitted power is constant.
The characteristic curves and field distributions ob-

tained with the present variational-method analysis em-

ploying expansion terms up to N = 10 show good agree-

ment with the analytic solutions reported previously in

the literature [10]–[12]. In most cases the difference in

u is too small to show in Figs. 3 and 4 (below 3 percent).

An exception is the lowest curve in Fig. 3(d), where a

relatively big difference from the analytic solution (dotted

curve) is found. This suggests that in the abrupt boundary

case more expansion terms should be computed for larger

v.

Since no cutoff condition is present for the HE1l mode,
it is the lowest transmission mode of the optical fiber.

The numerals in Fig. 3(b) – (d) indicate the cutoff values

of v for each mode. The cutoff v value of the TEO1 mode

gives the single-mode limit of the fiber because the TEOI

mode is the second lowest mode. For an optical fiber

having a quadratic refractive-index distribution, this

limit is given by v = 3.53. This value agrees with the

value obtained previously by Dil’s analysis [6].

VI. CONCLUSION

A variational method analysis has been proposed to de-

termine the propagation characteristics of an optical fiber

consisting of a core with an arbitrary refractive-index

distribution and a uniform cladding. Some results of the
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(a)

analysis are shown which support

analysis.

APPENDIX

DERIVATION OF

945

the validity of the

(29)

From (24), X~lin (28) is expressed as

(Al)

In the case m # O, from (17) and the Bessel-function

formulas,

dF~ ,k hk

dr = W? Ckrm(xl!a)
{Jm_,(&#) – Jn+,(x,T) }

Using Lommel’s integral formulas, X~z is given as

X7+1=

Next, in the case m = O, using (20) we readily

Xhz = ~h2&l. ;
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