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Analysis of Wave Propagation in Inhomogeneous Optical
Fibers Using a Variational Method

TAKANORI OKOSHI, MmEMBER, 1EEE, AND KATSUNARI OKAMOTO

Abstract—The variational method is used to determine the propa-
gation characteristics of an optical fiber consisting of a core with an
arbitrary refractive-index distribution and a uniform cladding.

The problem is first translated into a variational problem; the
functional is computed upon the TEM-approximation basis. The
variational problem is then solved by using the Rayleigh—Ritz method.
The computed propagation characteristics are presented for refrac-
tive-index distributions of practical interest. The single-mode
condition for a quadratic self-focusing fiber is obtained as » < 3.53
where v denotes the cqnventionally used normalized frequency; this
result agrees with the numerical analysis by Dil and Blok. The ob-
tained characteristic equations for the simplest case (uniform core
case) are compared with analytic solutions to ensure the validity
of the analysis. ‘ )

I. INTRODUCTION

HE glass fiber is the most promising optical waveguide

for use in the future optical communication and opti-
cal information-processing systems. It consists of a core
having uniform or graded refractive index and a cladding
with a smaller refractive index. When a glass fiber is pro-
duced by the double-crucible process [1], the boundary
.between the core and cladding becomes more or less
gradual due to the diffusion of the constituting materials.
Therefore, it is of practical interest to develop the method
of analyzing the propagation characteristics of “continu-
ously inhomogeneous” dielectric waveguides.

Kurtz and Streifer [2] analyzed the propagation of
electromagnetic waves in a radially inhomogeneous wave-
guide. Snyder [3] used the perturbation theory to obtain
the expression for the propagation constants of optieal
waveguides with diffused boundaries; his method is very
simple and useful in many practical cases. Clarricoats and
Chan [4] used a staircase function to approximate the
continuous variation of the refractive index, and solved
the problem in each stratified cylindrical medium. Kirch-
hoff [57], and Dil and Blok [67] used the power-series ex-
pansion to express the transverse field components in the
inhomogeneous core. Heyke and Kuhn [7] computed the
dispersion characteristics upon the basis of the variational
expression of the propagation constant. However, they
assumed a field distribution corresponding to a “reference
permittivity profile,” which is not always equal to the
actual profile.

In this paper we present a more exact variational-
method analysis of the radially inhomogeneous fiber.
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The scalar wave equation for the transverse field com-
ponents and the boundary conditions are translated into
a corresponding variational problem having the original
equation as its Euler equation. Solving this variational
problem by the Rayleigh-Ritz method, we obtain the
characteristic equation giving the propagation constant.
Numerical results are also presented for various refractive-
index profiles of practical interest.

In Section II, basic equations are derived and formu-
lated into a variational form. In Section III, the vari-
ational problem is solved by using the Rayleigh-Ritz
method to give the characteristic equation; its solutions
are shown in Section IV for several refractive-index pro-
files. The results of the ahalysis are compared with pre-
viously reported ones in Section V.

II. BASIC EQUATIONS

A. Field Equation and Boundary Condition

Consider a radially inhomogeneous dielectric cylinder
of radius a surrounded by a homogeneous dielectric me-
dium (Fig. 1). We assume that the permittivity varies
in the radial direction r as

e(r) = a[1 — f(r)], (1)

where ¢ is the permittivity upon the axis and f(r) is a
function satisfying

f(0) =0 [fn) | < 1. (2)

As has been shown by Kurtz and Streifer [2], the
transverse electric and magnetic fields consist of two
independent components:

Et = CY]_Et(1> + CgEt(z) (3&)
H;, = (LH,® — C.H® (3b)

where Cy and C; are arbitrary constants, E,® and H,®
(¢ = 1,2) are given in terms of the “transverse field func-
tions” ¥ ag

0<r<a

and

—3/4
E® = Sel_/;c‘g__. (£ju, — up) ¥ (7) (4a)
)
and
12
H = %ua X E,, (t=12). (4b)

In these equations 7 = (~1)Y2, ks = w(eomo) V2, 10 = (mo/€)"?,
o is the angular frequency, and u,, us, and u, are the radial,
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Fig. 1. Geometry of the waveguide. Symbols uo and e denote the
permeability of the media and the permittivity of the cladding.

azimuthal, and axial unit vectors, respectively. In (4) and
also in the following equations, the upper and lower signs
correspond to ¢ = 1 and 7 = 2, respectively. The trans-
verse field function satisfies the second-order differential
equation [2]

d ( du
—\r
dr dr

) + l:wze(r)uo — 8- (ﬁ—i—:-l—)f]r‘y(i) = 0,

(i=12) (5

where § is the propagation constant and n is the azimuthal
mode number (¥ e« exp (—jnd)).!

The axial electric and magnetic fields are given in terms
of ¥,

E, = (a/e) V4(—C1G® 4 C:G®) (6a)
and

H. = j((a/e)"*/n0) (C:GP + CoG®) (6b)
where

(7

The continuity conditions for ¥ and G at the core—
cladding interface (r = a), are expressed approximately?

as
[ 1 dw] _[ 1 d\Ifcl,,d“)]
v dr |_, h Yoaal®  dr .

where ¥4 (¢ = 1,2) are the transverse field functions

(8)

1 The two components, 2 = 1 and 7 = 2, correspond to two cir-
cularly polarized waves in opposite directions as seen in (4a). Hence,
essentially, they are on an equal footing. The differences in the
equations for the two components stems from the fact that in
deriving (5), the azimuthal dependence is not assumed as stationary
(sinusoidal) but as exp (—jn#8).

? Suppose we define a parameter § = 1 — e2/e(a) expressing the
relative discontinuity of the refractive index at the core—caldding
intérface. Then (8) is valid exactly only when & = 0, that is, when
no step is present at the interface. When & > 0 as in case A shown
in Fig. 2, the exact boundary conditions [10] are much more com-~
plicated than (8); some error will be included in the results obtained
upon the basis of (8). However, in most practical cases we may
approximate 8 — 0 (weak guidance approixmation) and use (8).
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in the cladding, and are the solutions of

d W o1aq<? 1) )
— <r @¥olaa® ) + [wzezuo - B (1) ]T‘Polad“) =0,
dr dr 2
(t=12). (9)
If we write
n—+1, 1 =1
m = for /
n— 1, 4= 2 (10)

we may use common notations: R(r) for ¥®(r) and
T (7), and Reaa(r) for Vea® (r) and ¥aaq® (r), to ob-
tain

d dR(r)} [ . . ”f] _
U g + |we(r)po — B o rB(r) =0 (11)
d clad ?
ar {7' M} -+ [w’ezuo - 2 — ’rl:lrolad("') =0 (12)
dr dr r
where the boundary condition is given as
[ 1 dR (7')] — [ 1 dRclad(T)] ) (13)
R (7') dr p—a Relaa (7‘) dr r=a

lEquations (11)-(13) are the starting equations of the

following analysis.

B. Formulation of the Problem in a Variational Form

We first compute the fields in the core. Singe the right-
hand side of (13) is unknown, we tentatively express it
by ¢s, which will be determined later in Section III-C.

The solution of (11) may be obtained also as the solu-
tion of the variational problem [87 to minimize the func-
tional:

ITR] = R(a)a¢s — f: {dlzy)}zr dr

+ / " [wze(r) o — B — ’—"—2]32(@7 dr. (14)
0 12

The justification of the above statement is given as follows.
We assume that I (R) is minimized for R(r) = Ry(r), and
consider a slightly deviated case in which R(r) = Ro(r) -+
on(r) & Rs(r), where 5(r) is an arbitrary continuous
function of r and & denotes a real small quantity. Putting
R;(r) into (14) and considering that I[Rs] must be mini-
mized for § = 0, we obtain

Iy
£I[Ra]

=0

dRo dn

= 2Ry(a)adsm(a) — 2/; r—c—l—r—-&;dr

+2 fa [w’e(r)#o -8 - g]TRo(r)n(r) dr = 0.
0

(15)

By partially integrating the second term, we may write
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1 dR, ¢ [d ( dR(,)
[R dr] } + /(, {dr dr

+ [wze(r)uo - 5 — :—:—2]7'130}71(7‘) dr =0. (16)

n(a)ako(a) {

Since 5(r) is an arbitrary function of r, this equation
shows that Ro.(r) satisfies both the wave equation (11)
and the boundary condition (13).

The final functional to be dealt with is obtained by
putting (1) into (14):

ITR(r)] = a¢sR%(a) + [wéelm [32]/ R2(r)rdr

_ fo [{‘”Zi’“)} L Rz(r)]rdr

= emo f ) R ()1 dr. 17)
0

IIT. SOLUTION OF TI}IE VARIATIONAL PROBLEM
BY RAYLEIGH-RITZ METHOD

A. Ezpansion by Ortho-Normalized Functions

To solve the above equation by using the Rayleigh-Ritz
method [8], we express R () in terms of a set of orthogonal
functions. We consider two cases: m = 0 and m = 0,
separately.

1) Casem =0 (n>0forv=1,0rn 2> 2fori=2):In
this case we use the orthogonal functions

@ J m()\}ﬂ‘)
a Jn(\a)
as the bases of the trial function of the Rayleigh-Ritz
method. In (18) Ny = jm-1,/a, Where jm_1,6 denotes the

nonzero kth root of J,-1(z) = 0. These functions satisfy
the ortho-normalizing condition [9]:

G (1) = (18)

[a G i {T) Gma{r)r dr = 8 (19)
0

where §; is Kronecker’s delta.

2) Casem =0 (n = 1,¢ = 2): In this case we denote
the kth root of J1(2) = 0 (including z = 0) by ji and
write ux = j1,5-1/a. We use a series of functions
\/_ﬁ J o(ulﬂ')

a Jo(ua) (20)

hi(r) =

as the bases of the trial function. From the Lommel’s
integral formulas, the ortho-normalizing condition

/“ he(r)ho(r)r dr = 6u (21)
0

is also proved [97].
B. The Functional

In the following analysis, to treat the cases m ¢ 0 and
m = 0 in a unified manner, a new notation
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. gmi (1), for m=0
Fm_k(’/‘) =

P (r), (22)

will be used. The ortho-normalizing conditions are then

for m=20

,/ Fonp(r) P (r)rdr = 81 (23)
0,

and the solution R(r) of the variational problem (17)

is expressed as

R(r) = % e 1 (1) (24)

k=1
where d; should be determined so that the functional
in (17) I[ds,0s,« -« +,ay] is minimized.
To determine ax, we must express each term of (17)
in terms of a;. First, from (24), we obtain

N N
R (1) = 3 3 as0iFui(r)Fo (7). (25)
k=1 I=1
ﬂence, from the ortho-riormalizing conditions (23),
re N N
/ Ri(r)rdr = X 3 aptidu (26)

0 k=1 1=1

in the second term of (17). As for the first term, since
Fni(a) = V2/a holds, we obtain

E Z a1

k 1 I=1

Rz(a = 27
The third term of (17 ) is rewritten, after some computa-~
tions using the Bessel-function formulas (see the Appendix
for the detail), as

[ (dR
/ [{ (r)} + — Rz(r)]rdr = Z Zakalel (28)
0 ar B=1 =1
where
2
Mgz — —272—7', for m0
o
Xu =
p.k25kl, for m = 0. (29)
Finally, the last term of (17) is given as
/ FORMrdr = 3 3 asnCos (30)
k=1 =1
where Cj; are parameters given in terms of f(r) as
2 [ M Our ) d
T (T () g T m M i)
_ for m = 0
Cor = (31)
2 [ fr) T ) o) d
—— r r ryr dr,
a*J o (usa)J o () Jy OLHRTI S0tk
form = 0.
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Putting (26)-(28) and (30) into (17), we may express
the functional in terms of a; as

I[al’a‘l; e :aN]

2 N N N N
=9 >3 wmor + (wPap — B2 X D aid

k=1 I=1 f=1 I=1
N N N N
— Z E akaszl — w2€1[£0 E Z akazCkp (32)
=1 l=1 k=1 l=1

C. Derivation of the Characteristic Equation

To minimize the functional I with respect to all the
parameters az, the following conditions must be satisfied
for all k:

ol 4 N N
— = =¢g 3 ar + 2(wPeo — %) 2. adu
dar, a5 =1

N N
-2 Z alX,,l — 2(.0261}10 Z dlel = 0. (33)

=1 I=1

These conditions are reduced to a set of homogeneous
hinear equations

N
S alSu =0, (k=12-+-,N) (34)
=1
where S;; are given as
2(ads + m) + (U — Jm,4?) 00 — wPeueo?Ciy,
(m £ 0)
Su = (35)
209 + (U2 — Jre—12) b — o?epea®Cry,
(m = 0)
u = (?au — §%)"a. (36)

The relations \g@ = Jnm_1.x and wpa = j1 51 have been used
in obtaining the previous equations. In order that a non-
trivial solution of (34) exists,

det (Sz) =0 37

must hold. This equation is the characteristic equation
which determines the propagation constant of the optical
fiber.

In the previous discussions, the parameter ¢z giving
the continuity condition at the core-cladding boundary
has been left undetermined. In the following we calculate
the parameter ¢s to make the characteristic equation
complete. We assume that the uniform cladding extends
to the infinite distance.

1) Casem = 0: In this case the solution of (12) is given
as Roioa(r) = BnK,.(wr/a), where B,, and K, denote ar-
bitrary constants and the mth order modified Bessel fune-

tions of the second kind, respectively, and
w = (8 — vem)a. (38)

Calculating the right-hand side of (13) using formulas
of the modified Bessel functions, we obtain two expres-
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sions for agg:

—1 — WK (W) /K (W), for ¢ = 1,

(case I) (39a)
agp = ‘
m — WKpp(w)/Ky(w), for 1 = 2,

(case IT). (39b)

2) Case m = 0: In this case the transverse field in the
cladding is expressed as Roiaa(r) = BoKo(wr/a), where
By, is an arbitrary constant. Hence the parameter a¢s
becomes

wK; (w)
Ko(U)) !
D. Unified Formulation of the Characteristic Equation

To treat the three cases I (39a), IT (39b), and III (39c)
in a unified manner, we put (39) into (35), and use the
notation

(case I1I). (39¢)

agg = —

Spe = @ + Uiy — Y (40)
where
2wk, (w) '
— ————.u.case I n>0,71=1
Kon(w) (r20,i=1
(41a)
2wK, )
‘I’=<4(n—1)—%0%°--caseﬂ n=21=2)
(41b)
— ... case I11 n=1,49=2
Ko(w) ( )
(41c)
(u? — Jni?) - -case I (42a)
Ur = § (U? — ju-2,4?) - -case I1 (42b)
(U — j1,51%) + » - case 111 (42¢)
and
2?6 po0? /1 .
- - azx)d . n kL)
T CGinid s o) g 105wt
Jui1(Guax)x dz-++(I) (43a)
20%e1 1002 1 .
Yig = < J o1 ozt
M T e Jy f @ e

‘Jn_1( jn__z,zx).’t dxe-- (II) (43b)

2wlesuo0?

1
; az)Jo( 1,5~
Jo( jra—)o( ji,i) '/o flax)Jo( j1.u-)
Jo( J1,1-12)x de- + - (I1I).
From (37) and (40), we obtain

(43¢)
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&4 U;—Yn &Y oes &—Yin
b— Ygl <I’+ Uz— Y22 d— Y2N
. . . = 0.
d— YN1 ‘I’—YNz q)"i" UN_ YNN
(44)
Equation (44) may be rewritten to
N N
D+&Y>Zu=0 (45)
b=1 1=1
where D is given as
Ul - Yll - Y12 - YIN
- Y21 U2 - Y22 - Y2N
D= . . . (46)
- YNI - YN2 UN - YNN

and Zj; is the cofactor of the element di(= Urdrs — Y1)
of matrix D. From (45), the characteristic equation (the
relation between % and w) of the optical fiber having an

arbitrary permittivity profile may be written in a unified

form

Zkz. (47)

iM=
IM=

1_
D

|t

1V. ANALYSIS OF THE PROPAGATION
CHARACTERISTICS

A. Homogeneous-Core Fibers

We first consider this simplest case with results that
can be compared with analytic solutions reported pre-
viously [107-[12]. In this case f(r) = 0 in (1); conse-
quently, from (43) Y = 0 for all £ and I. Hence we ob-
tain from (46)

N

D =11 U (48)
k=1

and Zj; are given as
N
H Uk, for k=1
Ziy = { b=lib=l (49)
0, for k=1

Putting (48) and (49) into (47) and setting N — «, we
obtain the characteristic equation for the homogeneous-
core fiber as

Ms

(50)

1
Uk’

N |

k:
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We first consider the above case I. From one of the
Bessel function formulas [97], we obtain

1 _ Jan()
ud o (u)

Hence, from (41a), (50), and (51), the characteristic
equation is given as

Z—*Z

T D (51)

Kn+1(w)
wK,(w)

a1 (u)

T wda(u) (52)

Referring to the classification of modes given by Snyder
[12], it is seen that (52) is identical to the characteristic
equation of the TEy; mode if n = 0, and that of the EH,;
mode if n > 1.

Next, for the above case II, using (41b), (42b), and
(50), we obtain

Kpa(w)  Juua(u)
WK (W) ud(u)

which is the characteristic equation of the HE,; mode
(n = 2) given by Snyder [12]. For the case III, from
(41c), (42¢), and (50), the characteristic equation is
given as

(53)

Ko(w)  Jo(w)
wKy(w)  wi(w)

which is identical to the HE;;-mode equation [127.

Thus the validity of the present analysis has partly been
proved by the eomparison with analytic solutions for the
special ease. We should here note that when we solve this
sort of problem by using the Rayleigh-Ritz method, we
obtain a set of characteristic equations directly but cannot
tell to what kinds of mode they correspond. In the present
case, the nature of the modes could be known by comparing

(54)

* the equations with the analytic solutions. In more general

cases as described in the following, the nature of a mode
can be known only after the corresponding field distribu-
tion has been computed.

B. Inhomogeneous-Core Fibers

To treat the problem more generally, we go back to
(1), or an equivalent expression in terms of the refractive
index:

n(r) = nf[1 — f(r) ],

where n; denotes the refractive index upon the axis. We
introduce here a parameter A which represents the rela-
tive difference of the refractive indexes in the core and
cladding:

0<r<ea (55)

(s — ng?)

A= o (56)
where 7, denotes the refractive index of the cladding. Note
that when A < 1, we may approximate A = (n, — m) /m.

In principle, the method of analysis described above
may be applied to any refractive-index distribution. How-
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ever, actually an entirely arbitrary, or extremely peculiar
distributions are not used. In the following discussions, to
be practical, we deal with “a set of various refractive-index
profiles including the homogeneous-core and the quadratic
refractive-index distribution as two special cases.”

The quadratic distribution may be expressed by

f(r) = 2Ar%/a2. (57)

Hence, we may use the following formula to express re-
fractive-index distributions “between’’ the homogeneous
and the quadratic cases:

sinh? (Pr/a)

1) = 28 =5 ()

(58)
When P — 0 this index profile approaches the quadratic
distribution, whereas when P — « to the homogeneous-
core case.

To express refractive-index distributions “sharper than”
the quadratic distribution, we use

tanh? (Qr/a)

F) =280 = Q)

(59)
which, when @ — 0 approaches the quadratic distribu-
tion, and when @ — o represents the ‘‘delta-function-
like” refractive-index distribution. Those various refrac-
tive-index profiles are illustrated in Tig. 2.

Next, following reference [11], we introduce a param-
eter v which is defined as

v = (u?+ w2, (60)
From (36), (38), (56), and (60), we obtain
v2
weyuo@® = 5A (61)

which shows that » is proportional to the frequency. Ac-
cordingly, v is often called the normalized frequency.
Using the parameter v we may rewrite (43a)-(43c) as

! S n1( Jn 52 w11 Jn, i)
21)2/ ) . —— xdx---case 1l
0 ol Jni1(Jn ) ni1( Jn 1)

(62a)

J n—l( jn—Z,kx)J n—l( jn—z,zx)
Jn—l( jn—2,k)Jn—1( jn—2,l)

1
Y= 2? / p(x) xdz.--casell
0

(62b)

Jo( Jrea2) o J1,1-12)

; : z dx- - -case ITT
Jo( Jl,k—l)Jo( ]1,1-1) ©

2 [ o0

(62¢c)

where 5 = r/a and p(x) = (1/2A)f(ax).

The previous equations tell that Y, are proportional
to the square of the normalized frequency v. Hence (47)
gives implicitly the relation between u and » because
® = func (w) and w? = »* — w2 Since the parameters a
and A characterizing the properties of the fiber do not
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Fig. 2. Various refractive-index distributions used in the numeri-
cal analysis. B, C, and D:n/m = 1 — Alsinh? (Pr/a)/sinh? (P)].
E:n/m =1~ A(r/a)?. F:n/ny = 1 — A[tanh? (Qr/a)/tanh? (@)].

appear in the equation, the propagation characteristics
of the fiber may be analyzed generally upon the basis of
(47).

C. Fields in the Fiber

When the relative refractive-index difference A and
the core radius a are given, we may determine the propa-~
gation constant 8; from the characteristic equation (47),
and further determine the values of u, v, and Sy; (k,! = 1,2,
«++,N). From those S, the coeflicients a; in (24) are
given as the solution of the following simultaneous equa-
tions of the order (N — 1):

Sl,l Sl.l-—l Sl.l+l SI,N Al,l
Sl—l,l Sl——l,l-—l Sl—l,l+1 b Sl—l,N Al—-l,l
S St St S| [Ar
SN,I SN.Z—-I SN,H—I e SN,N AN,l

Sl,l
Sl——l,l
= — (63)
S
SN,l
where Ay = ax/a; (b = 1,2,-++0 — 1,l + 1,--+,N). By

putting these a; thus obtained into (24), the transverse
fields ¥ (¢ = 1,2) of the Ith mode is determined except
for a constant factor. If we use A;; instead of ax, we may
express the transverse field in the core as

Jn+1( jn,kr/a)

N
\I;(l) =R A -
(r) = Ru 2 Au= i

k=1

...case I (64a)
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Fig. 3. Propagation characteristics for wvarious refractive-index
distributions. (a) HE; mode. (b) TEq mode. (¢) HE; mode.
(d) EHyg mode. [The dotted curve in (d) is the characteristic curve
obtained by the analytical solution (n = 4, = 2 in (52)).}
¥ Tt (jusar/@) distributions for various refractive-index profiles, the
RBuw 4 "J;—":——-———— -«-case II  (64b) constant Ry in (64) being determined so that the trans-
ket w1 Jns ) mitted power is constant.
T (r) = < The characteristic curves and field distributions ob-
N Jo( jrsr/a) tained with the present variational-method analysis em-
Ry > Ay N ————...cagse II1 (64c¢) ploying expansion terms up to N = 10 show good agree-
b=1 o( Jr-1) ment with the analytic solutions reported previously in
. the literature [10}-{12]. In most cases the difference in
where A;; = 1 and Ry = V2 a;/a, and the field in the [10-{12]

cladding as
Kp(wr/a) .

Voaa® (1) = TO I 65
1aaP (r) (a) K.oaw) case (65a)
T (q) %i_(l%)@ . cage 1T (65b)
‘I’clad(Z) (T) = 9
¥ (q) %Z)“)- . case TIL (65¢)

V. RESULTS OF COMPUTER ANALYSIS
AND DISCUSSIONS

The computed propagation characteristics and the
transverse field distributions for the various refractive-
index profiles illustrated in Fig. 2 are shown in Figs. 3
and 4. Fig. 3(a)—(d) shows the normalized eigenvalue u
as a function of the normalized frequency v for various
refractive-index profiles. Fig. 4(a)—(d) shows the field

u is too small to show in Figs. 3 and 4 (below 3 percent).
An exception is the lowest curve in Fig. 3(d), where a
relatively big difference from the analytic solution (dotted
curve) is found. This suggests that in the abrupt boundary
case more expansion terms should be computed for larger
v.

Since no cutoff condition is present for the HEy mode,
it is the lowest transmission mode of the optical fiber.
The numerals in Fig. 3(b)-(d) indicate the cutoff values
of v for each mode. The cutoff v value of the TEy mode
gives the single-mode limit of the fiber because the TEy
mode is the second lowest mode. For an optical fiber
having a quadratic refractive-index distribution, this
limit is given by v = 3.53. This value agrees with the
value obtained previously by Dil’s analysis [6].

VI. CONCLUSION

A variational method analysis has been proposed to de-
termine the propagation characteristics of an optical fiber
consisting of a core with an arbitrary refractive-index
distribution and a uniform cladding. Some results of the
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analysis are shown which support the validity of the
analysis.

APPENDIX

DERIVATION OF (29)
From (24), X, in (28) is expressed as

e dFm,k dFm.l @ ZL
Xlrl = 4/; [( dT )( dr > + (7' Fm,k)(,r ‘Fm,l>:|r dr.

(A1)

r=3

Field Distribution

=}
)
T

In the case m # 0, from (17) and the Bessel-function
formulas,
dFun N
dT \/Q at] m ()\ka)

05 10 15 20
Normalized Radius {r/a)

(a) 1) — Jma (r)

m )\k
;’Fm,k = m (T ) + Jma(ur) ). (A2)

Using Lommel’s integral formulas, Xy, is given as

o
T

Fietd Distribution

o
@

_2m ) (k#=1). (A.3)

a?

[} 0‘5 1‘0 15 ZIO
Normalrzed Rudius(r/c) Next, in the case m = 0, using (20) we readily obtain

(b) . .
Xu = w0 ¢ (A4)
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